Some Remarks on Berwald Manifolds and Landsberg Manifolds

نویسنده

  • TADASHI AIKOU
چکیده

In the present paper, we shall prove new characterizations of Berwald spaces and Landsberg spaces. The main idea inthis research is the use of the so-called average Riemannian metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Geometry of product complex Cartan manifolds

In this paper we consider the product of two complex Cartan manifolds, the outcome being a class of product complex Cartan spaces. Then, we study the relationships between the geometric objects of a product complex Cartan space and its components, (e.g. Chern-Cartan complex nonlinear connection, Cartan tensors). By means of these, we establish the necessary and sufficient conditions under which...

متن کامل

On Stretch curvature of Finsler manifolds

In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied.  In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every  (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...

متن کامل

ACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE

A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...

متن کامل

A New Proof of Szabó’s Theorem on the Riemann-metrizability of Berwald Manifolds

The starting point of the famous structure theorems on Berwald spaces due to Z.I. Szabó [4] is an observation on the Riemann-metrizability of positive definite Berwald manifolds. It states that there always exists a Riemannian metric on the underlying manifold such that its Levi-Civita connection is just the canonical connection of the Berwald manifold. In this paper we present a new elementary...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010